Knots, Braids and BPS States in M-Theory
نویسنده
چکیده
In previous work we consideredM -theory five branes wrapped on elliptic Calabi-Yau threefold near the smooth part of the discriminant curve. In this paper, we extend that work to compute the light states on the worldvolume of five-branes wrapped on fibers near certain singular loci of the discriminant. We regulate the singular behavior near these loci by deforming the discriminant curve and expressing the singularity in terms of knots and their associated braids. There braids allow us to compute the appropriate string junction lattice for the singularity and,hence to determine the spectrum of light BPS states. We find that these techniques are valid near singular points with N = 2 supersymmetry.
منابع مشابه
Representations of Composite Braids and Invariants for Mutant Knots and Links in Chern - Simons Field Theories
We show that any of the new knot invariants obtained from Chern-Simons theory based on an arbitrary non-abelian gauge group do not distinguish isotopically inequivalent mutant knots and links. In an attempt to distinguish these knots and links, we study Murakami (symmetrized version) r-strand composite braids. Salient features of the theory of such composite braids are presented. Representation...
متن کاملHomological algebra of knots and BPS states
It is known that knot homologies admit a physical description as spaces of open BPS states. We study operators and algebras acting on these spaces. This leads to a very rich story, which involves wall crossing phenomena, algebras of closed BPS states acting on spaces of open BPS states, and deformations of Landau-Ginzburg models. One important application to knot homologies is the existence of ...
متن کاملBraids, Transversal Knots and the Khovanov-rozansky Theory
We establish some inequalities about the Khovanov-Rozansky cohomologies of braids. These give new upper bounds of the self-linking numbers of transversal knots in standard contact S which is sharper than the well known bound given by the HOMFLY polynomial. We also introduce a sequence of transversal knot invariants, and discuss some of their properties.
متن کامل2 00 4 Virtual Braids
Just as classical knots and links can be represented by the closures of braids, so can virtual knots and links be represented by the closures of virtual braids [17]. Virtual braids have a group structure that can be described by generators and relations, generalizing the generators and relations of the classical braid group. This structure of virtual braids is worth study for its own sake. The ...
متن کاملVirtual Braids
Just as classical knots and links can be represented by the closures of braids, so can virtual knots and links be represented by the closures of virtual braids [16]. Virtual braids have a group structure that can be described by generators and relations, generalizing the generators and relations of the classical braid group. This structure of virtual braids is worth study for its own sake. The ...
متن کامل